Learn R Programming

sits (version 1.5.0)

plot.uncertainty_vector_cube: Plot uncertainty vector cubes

Description

plots a probability cube using stars

Usage

# S3 method for uncertainty_vector_cube
plot(
  x,
  ...,
  tile = x[["tile"]][[1]],
  palette = "RdYlGn",
  style = "cont",
  rev = TRUE,
  scale = 0.8
)

Value

A plot containing probabilities associated to each class for each pixel.

Arguments

x

Object of class "probs_vector_cube".

...

Further specifications for plot.

tile

Tile to be plotted.

palette

RColorBrewer palette

style

Method to process the color scale ("cont", "order", "quantile", "fisher", "jenks", "log10")

rev

Reverse order of colors in palette?

scale

Scale to plot map (0.4 to 1.0)

Author

Gilberto Camara, gilberto.camara@inpe.br

Examples

Run this code
if (sits_run_examples()) {
    # create a random forest model
    rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
    # create a data cube from local files
    data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
    cube <- sits_cube(
        source = "BDC",
        collection = "MOD13Q1-6",
        data_dir = data_dir
    )
    # segment the image
    segments <- sits_segment(
        cube = cube,
        seg_fn = sits_slic(step = 5,
                           compactness = 1,
                           dist_fun = "euclidean",
                           avg_fun = "median",
                           iter = 20,
                           minarea = 10,
                           verbose = FALSE),
        output_dir = tempdir()
    )
    # classify a data cube
    probs_vector_cube <- sits_classify(
        data = segments,
        ml_model = rfor_model,
        output_dir = tempdir()
    )
    # measure uncertainty
    uncert_vector_cube <- sits_uncertainty(
        cube = probs_vector_cube,
        type = "margin",
        output_dir = tempdir()
    )
    # plot the resulting uncertainty cube
    plot(uncert_vector_cube)
}

Run the code above in your browser using DataLab