plots a classified raster using ggplot.
# S3 method for class_cube
plot(
x,
y,
...,
tile = x[["tile"]][[1]],
title = "Classified Image",
legend = NULL,
palette = "Spectral",
scale = 1,
max_cog_size = 1024
)
A color map, where each pixel has the color associated to a label, as defined by the legend parameter.
Object of class "class_cube".
Ignored.
Further specifications for plot.
Tile to be plotted.
Title of the plot.
Named vector that associates labels to colors.
Alternative RColorBrewer palette
Relative scale (0.4 to 1.0) that controls
Maximum size of COG overviews (lines or columns)
Gilberto Camara, gilberto.camara@inpe.br
if (sits_run_examples()) {
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir
)
# classify a data cube
probs_cube <- sits_classify(
data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# label cube with the most likely class
label_cube <- sits_label_classification(
probs_cube,
output_dir = tempdir()
)
# plot the resulting classified image
plot(label_cube)
}
Run the code above in your browser using DataLab