Learn R Programming

sits (version 1.5.2)

plot.uncertainty_cube: Plot uncertainty cubes

Description

plots a uncertainty cube

Usage

# S3 method for uncertainty_cube
plot(
  x,
  ...,
  tile = x[["tile"]][[1]],
  roi = NULL,
  palette = "RdYlGn",
  rev = TRUE,
  scale = 1,
  first_quantile = 0.02,
  last_quantile = 0.98,
  max_cog_size = 1024,
  legend_position = "inside"
)

Value

A plot object produced showing the uncertainty associated to each classified pixel.

Arguments

x

Object of class "probs_image".

...

Further specifications for plot.

tile

Tiles to be plotted.

roi

Spatial extent to plot in WGS 84 - named vector with either (lon_min, lon_max, lat_min, lat_max) or (xmin, xmax, ymin, ymax)

palette

An RColorBrewer palette

rev

Reverse the color order in the palette?

scale

Scale to plot map (0.4 to 1.0)

first_quantile

First quantile for stretching images

last_quantile

Last quantile for stretching images

max_cog_size

Maximum size of COG overviews (lines or columns)

legend_position

Where to place the legend (default = "inside")

Author

Gilberto Camara, gilberto.camara@inpe.br

Examples

Run this code
if (sits_run_examples()) {
    # create a random forest model
    rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
    # create a data cube from local files
    data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
    cube <- sits_cube(
        source = "BDC",
        collection = "MOD13Q1-6.1",
        data_dir = data_dir
    )
    # classify a data cube
    probs_cube <- sits_classify(
        data = cube, ml_model = rfor_model, output_dir = tempdir()
    )
    # calculate uncertainty
    uncert_cube <- sits_uncertainty(probs_cube, output_dir = tempdir())
    # plot the resulting uncertainty cube
    plot(uncert_cube)
}

Run the code above in your browser using DataLab