Learn R Programming

sits (version 1.5.2)

plot.variance_cube: Plot variance cubes

Description

plots a variance cube

Usage

# S3 method for variance_cube
plot(
  x,
  ...,
  tile = x[["tile"]][[1]],
  roi = NULL,
  labels = NULL,
  palette = "YlGnBu",
  rev = FALSE,
  type = "map",
  quantile = 0.75,
  scale = 1,
  max_cog_size = 1024,
  legend_position = "inside",
  legend_title = "logvar"
)

Value

A plot containing local variances associated to the logit probability for each pixel and each class.

Arguments

x

Object of class "variance_cube".

...

Further specifications for plot.

tile

Tile to be plotted.

roi

Spatial extent to plot in WGS 84 - named vector with either (lon_min, lon_max, lat_min, lat_max) or (xmin, xmax, ymin, ymax)

labels

Labels to plot.

palette

RColorBrewer palette

rev

Reverse order of colors in palette?

type

Type of plot ("map" or "hist")

quantile

Minimum quantile to plot

scale

Scale to plot map (0.4 to 1.0)

max_cog_size

Maximum size of COG overviews (lines or columns)

legend_position

Where to place the legend (default = "inside")

legend_title

Title of legend (default = "probs")

Author

Gilberto Camara, gilberto.camara@inpe.br

Examples

Run this code
if (sits_run_examples()) {
    # create a random forest model
    rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
    # create a data cube from local files
    data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
    cube <- sits_cube(
        source = "BDC",
        collection = "MOD13Q1-6.1",
        data_dir = data_dir
    )
    # classify a data cube
    probs_cube <- sits_classify(
        data = cube, ml_model = rfor_model, output_dir = tempdir()
    )
    # obtain a variance cube
    var_cube <- sits_variance(probs_cube, output_dir = tempdir())
    # plot the variance cube
    plot(var_cube)
}

Run the code above in your browser using DataLab