if (sits_run_examples()) {
# show accuracy for a set of samples
train_data <- sits_sample(samples_modis_ndvi, frac = 0.5)
test_data <- sits_sample(samples_modis_ndvi, frac = 0.5)
rfor_model <- sits_train(train_data, sits_rfor())
points_class <- sits_classify(
data = test_data, ml_model = rfor_model
)
acc <- sits_accuracy(points_class)
# show accuracy for a data cube classification
# create a random forest model
rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
# create a data cube from local files
data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
cube <- sits_cube(
source = "BDC",
collection = "MOD13Q1-6.1",
data_dir = data_dir
)
# classify a data cube
probs_cube <- sits_classify(
data = cube, ml_model = rfor_model, output_dir = tempdir()
)
# label the probability cube
label_cube <- sits_label_classification(
probs_cube,
output_dir = tempdir()
)
# obtain the ground truth for accuracy assessment
ground_truth <- system.file("extdata/samples/samples_sinop_crop.csv",
package = "sits"
)
# make accuracy assessment
as <- sits_accuracy(label_cube, validation = ground_truth)
}
Run the code above in your browser using DataLab