Learn R Programming

sits (version 1.5.2)

sits_label_classification: Build a labelled image from a probability cube

Description

Takes a set of classified raster layers with probabilities, and label them based on the maximum probability for each pixel.

Usage

sits_label_classification(cube, ...)

# S3 method for probs_cube sits_label_classification( cube, ..., memsize = 4L, multicores = 2L, output_dir, version = "v1", progress = TRUE )

# S3 method for probs_vector_cube sits_label_classification( cube, ..., output_dir, version = "v1", progress = TRUE )

# S3 method for raster_cube sits_label_classification(cube, ...)

# S3 method for derived_cube sits_label_classification(cube, ...)

# S3 method for default sits_label_classification(cube, ...)

Value

A data cube with an image with the classified map.

Arguments

cube

Classified image data cube.

...

Other parameters for specific functions.

memsize

maximum overall memory (in GB) to label the classification.

multicores

Number of workers to label the classification in parallel.

output_dir

Output directory for classified files.

version

Version of resulting image (in the case of multiple runs).

progress

Show progress bar?

Author

Rolf Simoes, rolf.simoes@inpe.br

Felipe Souza, felipe.souza@inpe.br

Examples

Run this code
if (sits_run_examples()) {
    # create a random forest model
    rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
    # create a data cube from local files
    data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
    cube <- sits_cube(
        source = "BDC",
        collection = "MOD13Q1-6.1",
        data_dir = data_dir
    )
    # classify a data cube
    probs_cube <- sits_classify(
        data = cube, ml_model = rfor_model, output_dir = tempdir()
    )
    # plot the probability cube
    plot(probs_cube)
    # smooth the probability cube using Bayesian statistics
    bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
    # plot the smoothed cube
    plot(bayes_cube)
    # label the probability cube
    label_cube <- sits_label_classification(
        bayes_cube,
        output_dir = tempdir()
    )
    # plot the labelled cube
    plot(label_cube)
}

Run the code above in your browser using DataLab