Learn R Programming

sits (version 1.5.3-1)

sits_mosaic: Mosaic classified cubes

Description

Creates a mosaic of all tiles of a sits cube. Mosaics can be created from both regularized ARD images or from classified maps. In the case of ARD images, a mosaic will be produce for each band/date combination. It is better to first regularize the data cubes and then use sits_mosaic.

Usage

sits_mosaic(
  cube,
  crs = "EPSG:3857",
  roi = NULL,
  multicores = 2L,
  output_dir,
  res = NULL,
  version = "v1",
  progress = TRUE
)

Value

a sits cube with only one tile.

Arguments

cube

A sits data cube.

crs

A target coordinate reference system of raster mosaic. The provided crs could be a string (e.g, "EPSG:4326" or a proj4string), or an EPSG code number (e.g. 4326). Default is "EPSG:3857" - WGS 84 / Pseudo-Mercator.

roi

Region of interest (see below).

multicores

Number of cores that will be used to crop the images in parallel.

output_dir

Directory for output images.

res

Spatial resolution of the mosaic. Default is NULL.

version

Version of resulting image (in the case of multiple tests)

progress

Show progress bar? Default is TRUE.

Author

Felipe Carvalho, felipe.carvalho@inpe.br

Rolf Simoes, rolfsimoes@gmail.com

Felipe Carlos, efelipecarlos@gmail.com

Examples

Run this code
if (sits_run_examples()) {
    # create a random forest model
    rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
    # create a data cube from local files
    data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
    cube <- sits_cube(
        source = "BDC",
        collection = "MOD13Q1-6.1",
        data_dir = data_dir
    )
    # classify a data cube
    probs_cube <- sits_classify(
        data = cube, ml_model = rfor_model, output_dir = tempdir()
    )
    # smooth the probability cube using Bayesian statistics
    bayes_cube <- sits_smooth(probs_cube, output_dir = tempdir())
    # label the probability cube
    label_cube <- sits_label_classification(
        bayes_cube,
        output_dir = tempdir()
    )
    # create roi
    roi <- sf::st_sfc(
        sf::st_polygon(
            list(rbind(
                c(-55.64768, -11.68649),
                c(-55.69654, -11.66455),
                c(-55.62973, -11.61519),
                c(-55.64768, -11.68649)
            ))
        ),
        crs = "EPSG:4326"
    )
    # crop and mosaic classified image
    mosaic_cube <- sits_mosaic(
        cube = label_cube,
        roi = roi,
        crs = "EPSG:4326",
        output_dir = tempdir()
    )
}

Run the code above in your browser using DataLab