Learn R Programming

sits (version 1.5.4)

plot.uncertainty_cube: Plot uncertainty cubes

Description

plots a uncertainty cube

Usage

# S3 method for uncertainty_cube
plot(
  x,
  ...,
  tile = x[["tile"]][[1L]],
  roi = NULL,
  palette = "RdYlGn",
  rev = TRUE,
  scale = 1,
  first_quantile = 0.02,
  last_quantile = 0.98,
  max_cog_size = 1024L,
  legend_position = "inside"
)

Value

A plot object produced showing the uncertainty associated to each classified pixel.

Arguments

x

Object of class "probs_image".

...

Further specifications for plot.

tile

Tiles to be plotted.

roi

Spatial extent to plot (see note)

palette

An RColorBrewer or "cols4all" palette

rev

Reverse the color order in the palette?

scale

Scale to plot map (0.4 to 1.0)

first_quantile

First quantile for stretching images

last_quantile

Last quantile for stretching images

max_cog_size

Maximum size of COG overviews (lines or columns)

legend_position

Where to place the legend (default = "inside")

Author

Gilberto Camara, gilberto.camara@inpe.br

Examples

Run this code
if (sits_run_examples()) {
    # create a random forest model
    rfor_model <- sits_train(samples_modis_ndvi, sits_rfor())
    # create a data cube from local files
    data_dir <- system.file("extdata/raster/mod13q1", package = "sits")
    cube <- sits_cube(
        source = "BDC",
        collection = "MOD13Q1-6.1",
        data_dir = data_dir
    )
    # classify a data cube
    probs_cube <- sits_classify(
        data = cube, ml_model = rfor_model, output_dir = tempdir()
    )
    # calculate uncertainty
    uncert_cube <- sits_uncertainty(probs_cube, output_dir = tempdir())
    # plot the resulting uncertainty cube
    plot(uncert_cube)
}

Run the code above in your browser using DataLab