if (sits_run_examples()) {
# find best learning rate for TempCNN
tuned <- sits_tuning(
samples_modis_ndvi,
ml_method = sits_tempcnn(),
params = sits_tuning_hparams(
optimizer = choice(
torch::optim_adamw
),
opt_hparams = list(
lr = loguniform(10^-2, 10^-4)
)
),
trials = 4,
multicores = 2,
progress = FALSE
)
# obtain best accuracy, kappa and best_lr
accuracy <- tuned$accuracy[[1]]
kappa <- tuned$kappa[[1]]
best_lr <- tuned$opt_hparams[[1]]$lr
# find best number of trees for random foresr
rf_tuned <- sits_tuning(
samples_modis_ndvi,
ml_method = sits_rfor(),
params = sits_tuning_hparams(
num_trees = choice(100, 200, 300)
),
trials = 10,
multicores = 2,
progress = FALSE
)
# obtain best accuracy, kappa and best_lr
rf_accuracy <- rf_tuned$accuracy[[1]]
rf_kappa <- rf_tuned$kappa[[1]]
rf_best_num_trees <- rf_tuned$num_trees
}
Run the code above in your browser using DataLab