sjc.cluster(data, groupcount, method = "h", distance = "euclidean",
agglomeration = "ward", iter.max = 20, algorithm = "Hartigan-Wong")
sjc.grpdisc
-function to
check the goodness of classification.
The returned vector includes missing values, so it can be appended
to the original data frame data
.# Hierarchical clustering of mtcars-dataset
groups <- sjc.cluster(mtcars, 5)
# K-means clustering of mtcars-dataset
groups <- sjc.cluster(mtcars, 5, method="k")
Run the code above in your browser using DataLab