# prepare dummy variables for binary logistic regression
y1 <- ifelse(swiss$Fertility<median(swiss$Fertility), 0, 1)
y2 <- ifelse(swiss$Infant.Mortality<median(swiss$Infant.Mortality), 0, 1)
y3 <- ifelse(swiss$Agriculture<median(swiss$Agriculture), 0, 1)
# Now fit the models. Note that all models share the same predictors
# and only differ in their dependent variable (y1, y2 and y3)
fitOR1 <- glm(y1 ~ swiss$Education+swiss$Examination+swiss$Catholic,
family=binomial(link="logit"))
fitOR2 <- glm(y2 ~ swiss$Education+swiss$Examination+swiss$Catholic,
family=binomial(link="logit"))
fitOR3 <- glm(y3 ~ swiss$Education+swiss$Examination+swiss$Catholic,
family=binomial(link="logit"))
# plot multiple models
sjp.glmm(fitOR1, fitOR2, fitOR3, facet.grid=TRUE)
# plot multiple models with legend labels and point shapes instead of value labels
sjp.glmm(fitOR1, fitOR2, fitOR3,
labelDependentVariables=c("Fertility", "Infant Mortality", "Agriculture"),
showValueLabels=FALSE,
showPValueLabels=FALSE,
usePShapes=TRUE,
nsAlpha=0.2)
Run the code above in your browser using DataLab