# fit model
library(lme4)
fit <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
# simple plot
sjp.lmer(fit)
# plot fixed effects
sjp.lmer(fit, type = "fe")
# sort by predictor Days
sjp.lmer(fit, sort.coef = "Days")
# plot each predictor as own plot
# sort each plot
sjp.lmer(fit,
facet.grid = FALSE,
sort.coef = "sort.all")
# plot and sort fixed effects
sjp.lmer(fit,
type = "fe",
sort.coef = TRUE)
library(lme4)
data(efc)
# prepare group variable
efc$grp = as.factor(efc$e15relat)
levels(x = efc$grp) <- get_val_labels(efc$e15relat)
# data frame for fitted model
mydf <- na.omit(data.frame(neg_c_7 = as.numeric(efc$neg_c_7),
sex = as.factor(efc$c161sex),
c12hour = as.numeric(efc$c12hour),
barthel = as.numeric(efc$barthtot),
grp = efc$grp))
# fit glmer
fit <- lmer(neg_c_7 ~ sex + c12hour + barthel + (1|grp),
data = mydf)
# plot random effects
sjp.lmer(fit)
# plot fixed effects
sjp.lmer(fit, type = "fe")
sjp.lmer(fit,
type = "fe.std",
sort.coef = TRUE)
# plot fixed effects slopes for
# each random intercept, but only for
# coefficient "c12hour"
sjp.lmer(fit,
type = "fe.ri",
vars = "c12hour")
# plot fixed effects correlations
sjp.lmer(fit, type = "fe.cor")
# qq-plot of random effects
sjp.lmer(fit, type = "re.qq")
Run the code above in your browser using DataLab