# prepare dummy variables for binary logistic regression
# Now fit the models. Note that all models share the same predictors
# and only differ in their dependent variable
data(efc)
# fit first model
fit1 <- lm(barthtot ~ c160age + c12hour + c161sex + c172code, data=efc)
# fit second model
fit2 <- lm(neg_c_7 ~ c160age + c12hour + c161sex + c172code, data=efc)
# fit third model
fit3 <- lm(tot_sc_e ~ c160age + c12hour + c161sex + c172code, data=efc)
# plot multiple models
sjp.lmm(fit1, fit2, fit3, facet.grid=TRUE)
# plot multiple models with legend labels and point shapes instead of value labels
sjp.lmm(fit1, fit2, fit3,
axisLabels.y=c("Carer's Age", "Hours of Care",
"Carer's Sex", "Educational Status"),
labelDependentVariables=c("Barthel Index", "Negative Impact", "Services used"),
showValueLabels=FALSE,
showPValueLabels=FALSE,
usePShapes=TRUE,
nsAlpha=0.3)
Run the code above in your browser using DataLab