# create data frame with 5 random variables
df <- as.data.frame(cbind(rnorm(10),
rnorm(10),
rnorm(10),
rnorm(10),
rnorm(10)))
# plot correlation matrix using circles
sjt.corr(df)
# -------------------------------
# Data from the EUROFAMCARE sample dataset
# -------------------------------
data(efc)
# retrieve variable and value labels
varlabs <- get_var_labels(efc)
# recveive first item of COPE-index scale
start <- which(colnames(efc) == "c83cop2")
# recveive last item of COPE-index scale
end <- which(colnames(efc) == "c88cop7")
# create data frame with COPE-index scale
df <- as.data.frame(efc[, c(start : end)])
colnames(df) <- varlabs[c(start : end)]
# we have high correlations here, because all items
# belong to one factor. See example from "sjp.pca".
sjt.corr(df, pvaluesAsNumbers = TRUE)
# -------------------------------
# auto-detection of labels, only lower triangle
# -------------------------------
efc <- set_var_labels(efc, varlabs)
sjt.corr(efc[, c(start : end)], triangle = "lower")
# -------------------------------
# auto-detection of labels, only lower triangle,
# all correlation values smaller than 0.3 are not
# shown in the table
# -------------------------------
efc <- set_var_labels(efc, varlabs)
sjt.corr(efc[, c(start : end)],
triangle = "lower",
val.rm = 0.3)
# -------------------------------
# auto-detection of labels, only lower triangle,
# all correlation values smaller than 0.3 are printed
# in blue
# -------------------------------
efc <- set_var_labels(efc, varlabs)
sjt.corr(efc[, c(start : end)],
triangle = "lower",
val.rm = 0.3,
CSS = list(css.valueremove = 'color:blue;'))
Run the code above in your browser using DataLab