library(lme4)
library(sjmisc)
data(efc)
# create binary response
efc$hi_qol <- dicho(efc$quol_5)
# prepare group variable
efc$grp = as.factor(efc$e15relat)
levels(x = efc$grp) <- get_val_labels(efc$e15relat)
# data frame for fitted model
mydf <- data.frame(hi_qol = as.factor(efc$hi_qol),
sex = as.factor(efc$c161sex),
c12hour = as.numeric(efc$c12hour),
neg_c_7 = as.numeric(efc$neg_c_7),
education = as.factor(efc$c172code),
grp = efc$grp)
# fit glmer
fit1 <- glmer(hi_qol ~ sex + c12hour + neg_c_7 + (1|grp),
data = mydf,
family = binomial("logit"))
fit2 <- glmer(hi_qol ~ sex + c12hour + neg_c_7 + education + (1|grp),
data = mydf,
family = binomial("logit"))
# print summary table
sjt.glmer(fit1, fit2)
sjt.glmer(fit1, fit2,
showAIC = TRUE,
showConfInt = FALSE,
showStdError = TRUE,
pvaluesAsNumbers = FALSE)
Run the code above in your browser using DataLab