# boxplot
sjp.frq(ChickWeight$weight, type = "box")
# histogram
sjp.frq(discoveries, type = "hist", showMeanIntercept = TRUE)
# violin plot
sjp.frq(ChickWeight$weight, type = "v")
# bar plot
sjp.frq(ChickWeight$Diet)
# bar plot with EUROFAMCARE sample dataset
# dataset was importet from an SPSS-file, using:
# efc <- sjmisc::read_spss("efc.sav", enc = "UTF-8")
library(sjmisc)
data(efc)
# you may use sjp.setTheme here to change axis textangle
sjp.frq(efc$e15relat)
# bar plot with EUROFAMCARE sample dataset
# grouped variable
ageGrp <- group_var(efc$e17age)
ageGrpLab <- group_labels(efc$e17age)
sjp.frq(ageGrp,
title = get_label(efc$e17age),
axisLabels.x = ageGrpLab)
# box plots with interaction variable
# the following example is equal to the function call
# sjp.grpfrq(efc$e17age, efc$e16sex, type = "box")
sjp.frq(efc$e17age,
title = paste(get_label(efc$e17age),
"by",
get_label(efc$e16sex),
interactionVar = efc$e16sex,
interactionVarLabels = get_labels(efc$e16sex),
type = "box"))
# negative impact scale, ranging from 7-28
sjp.frq(efc$neg_c_7)
# plotting confidence intervals
sjp.frq(efc$e15relat,
type = "dots",
showCI = TRUE,
sort.frq = "desc",
coord.flip = TRUE,
expand.grid = TRUE, # for text labels
vjust = "bottom", # for text labels
hjust = "left") # for text labels
# Simulate ggplot-default histogram
sjp.frq(efc$c160age,
type = "h",
geom.size = 3)
# histogram with overlayed normal curves
sjp.frq(efc$c160age,
type = "h",
showMeanIntercept = TRUE,
showMeanValue = TRUE,
showNormalCurve = TRUE,
showStandardDeviation = TRUE,
showStandardNormalCurve = TRUE,
normalCurveColor = "blue",
normalCurveSize = 3,
axisLimits.y = c(0,50))Run the code above in your browser using DataLab