if (FALSE) {
# Basic workflow:
## simulate community:
com = simulate_SDM(env = 3L, species = 7L, sites = 100L)
## fit model:
model = sjSDM(Y = com$response,env = com$env_weights, iter = 50L,
verbose = FALSE)
# increase iter for your own data
# Default distribution is binomial("probit"). Alternatively, you can use
# binomial(logit), poisson("log"), "nbinom" (with log, still somewhat
# experimental) and gaussian("identity")
coef(model)
summary(model)
getCov(model)
## plot results
species=c("sp1","sp2","sp3","sp4","sp5","sp6","sp7")
group=c("mammal","bird","fish","fish","mammal","amphibian","amphibian")
group = data.frame(species=species,group=group)
plot(model,group=group)
## calculate post-hoc p-values:
p = getSe(model)
summary(p)
## or turn on the option in the sjSDM function:
model = sjSDM(Y = com$response, env = com$env_weights, se = TRUE,
family = binomial("probit"),
iter = 2L,
verbose = FALSE)
summary(model)
## fit model with interactions:
model = sjSDM(Y = com$response,
env = linear(data = com$env_weights, formula = ~X1:X2 + X3),
se = TRUE,
iter = 2L,
verbose = FALSE) # increase iter for your own data
summary(model)
## without intercept:
model = update(model, env_formula = ~0+X1:X2 + X3,
verbose = FALSE)
summary(model)
## predict with model:
preds = predict(model, newdata = com$env_weights)
## calculate R-squared:
R2 = Rsquared(model)
print(R2)
# With spatial terms:
## linear spatial model
XY = matrix(rnorm(200), 100, 2)
model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear(XY, ~0+X1:X2),
iter = 50L,
verbose = FALSE) # increase iter for your own data
summary(model)
predict(model, newdata = com$env_weights, SP = XY)
R2 = Rsquared(model)
print(R2)
## Using spatial eigenvectors as predictors to account
## for spatial autocorrelation is a common approach:
SPV = generateSpatialEV(XY)
model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear(SPV, ~0+., lambda = 0.1),
iter = 50L,
verbose = FALSE) # increase iter for your own data
summary(model)
predict(model, newdata = com$env_weights, SP = SPV)
## Visualize internal meta-community structure
an = anova(model,
verbose = FALSE)
internal = internalStructure(an)
plot(internal)
## Visualize community assemlby effects
plotAssemblyEffects(internal)
### see ?anova.sjSDM for mroe details
## non-linear(deep neural network) model
model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = DNN(SPV,hidden = c(5L, 5L), ~0+.),
iter = 2L,# increase iter for your own data
verbose = FALSE)
summary(model)
predict(model, newdata = com$env_weights, SP = SPV)
# Regularization
## lambda is the regularization strength
## alpha weights the lasso or ridge penalty:
## - alpha = 0 --> pure lasso
## - alpha = 1.0 --> pure ridge
model = sjSDM(Y = com$response,
# mix of lasso and ridge
env = linear(com$env_weights, lambda = 0.01, alpha = 0.5),
# we can do the same for the species-species associations
biotic = bioticStruct(lambda = 0.01, alpha = 0.5),
iter = 2L,# increase iter for your own data
verbose = FALSE)
summary(model)
coef(model)
getCov(model)
# Anova
com = simulate_SDM(env = 3L, species = 15L, sites = 200L, correlation = TRUE)
XY = matrix(rnorm(400), 200, 2)
SPV = generateSpatialEV(XY)
model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear(SPV, ~0+.),
verbose = FALSE,
iter = 50L) # increase iter for your own data
result = anova(model, verbose = FALSE)
print(result)
plot(result)
## visualize internal meta-community structure
internal = internalStructure(an)
plot(internal)
# Deep neural networks
## we can fit also a deep neural network instead of a linear model:
model = sjSDM(Y = com$response,
env = DNN(com$env_weights, hidden = c(10L, 10L, 10L)),
verbose = FALSE,
iter = 2L) # increase iter for your own data
summary(model)
getCov(model)
pred = predict(model, newdata = com$env_weights)
## extract weights
weights = getWeights(model)
## we can also assign weights:
setWeights(model, weights)
## with regularization:
model = sjSDM(Y = com$response,
# mix of lasso and ridge
env = DNN(com$env_weights, lambda = 0.01, alpha = 0.5),
# we can do the same for the species-species associations
biotic = bioticStruct(lambda = 0.01, alpha = 0.5),
verbose = FALSE,
iter = 2L) # increase iter for your own data
getCov(model)
getWeights(model)
}
Run the code above in your browser using DataLab