if (FALSE) {
# simulate sparse community:
com = simulate_SDM(env = 5L, species = 25L, sites = 50L, sparse = 0.5)
# tune regularization:
tune_results = sjSDM_cv(Y = com$response,
env = com$env_weights,
tune = "random", # random steps in tune-paramter space
CV = 2L, # 3-fold cross validation
tune_steps = 2L,
alpha_cov = seq(0, 1, 0.1),
alpha_coef = seq(0, 1, 0.1),
lambda_cov = seq(0, 0.1, 0.001),
lambda_coef = seq(0, 0.1, 0.001),
n_cores = 2L,
sampling = 100L,
# small models can be also run in parallel on the GPU
iter = 2L # we can pass arguments to sjSDM via...
)
# print overall results:
tune_results
# summary (mean values over CV for each tuning step)
summary(tune_results)
# visualize tuning and best points:
# best = plot(tune_results, perf = "logLik")
# fit model with best regularization paramter:
model = sjSDM.tune(tune_results)
summary(model)
}
Run the code above in your browser using DataLab