dummy <- sample(1:4, 40, replace = TRUE)
frq(dummy)
dummy <- set_labels(dummy, c("very low", "low", "mid", "hi"))
frq(dummy)
# force using all labels, even if not all labels
# have associated values in vector
x <- c(2, 2, 3, 3, 2)
# only two value labels
x <- set_labels(x, c("1", "2", "3"))
x
frq(x)
# or use:
# set_labels(x) <- c("1", "2", "3")
# all three value labels
x <- set_labels(x, c("1", "2", "3"), force.labels = TRUE)
x
frq(x)
# create vector
x <- c(1, 2, 3, 2, 4, NA)
# add less labels than values
x <- set_labels(x, c("yes", "maybe", "no"), force.values = FALSE)
x
# add all necessary labels
x <- set_labels(x, c("yes", "maybe", "no"), force.values = TRUE)
x
# set labels and missings
x <- c(1, 1, 1, 2, 2, -2, 3, 3, 3, 3, 3, 9)
x <- set_labels(x, c("Refused", "One", "Two", "Three", "Missing"))
x
set_na(x, c(-2, 9))
library(haven)
x <- labelled(c(1:3, tagged_na("a", "c", "z"), 4:1),
c("Agreement" = 1, "Disagreement" = 4, "First" = tagged_na("c"),
"Refused" = tagged_na("a"), "Not home" = tagged_na("z")))
# get current NA values
x
get_na(x)
# lose value labels from tagged NA by default, if not specified
set_labels(x, c("New Three" = 3))
# do not drop na
set_labels(x, c("New Three" = 3), drop.na = FALSE)
# set labels via named vector,
# not using all possible values
data(efc)
get_labels(efc$e42dep)
x <- set_labels(efc$e42dep, c(`independent` = 1,
`severe dependency` = 2,
`missing value` = 9))
get_labels(x, include.values = "p")
get_labels(x, include.values = "p", include.non.labelled = TRUE)
# labels can also be set for tagged NA value
# create numeric vector
x <- c(1, 2, 3, 4)
# set 2 and 3 as missing, which will automatically set as
# tagged NA by 'set_na()'
set_na(x) <- c(2, 3)
x
# set label via named vector just for tagged NA(3)
set_labels(x, c(`New Value` = tagged_na("3")))
# setting same value labels to multiple vectors
# create a set of dummy variables
dummy1 <- sample(1:4, 40, replace = TRUE)
dummy2 <- sample(1:4, 40, replace = TRUE)
dummy3 <- sample(1:4, 40, replace = TRUE)
# put them in list-object
dummies <- list(dummy1, dummy2, dummy3)
# and set same value labels for all three dummies
dummies <- set_labels(dummies, c("very low", "low", "mid", "hi"))
# see result...
get_labels(dummies)
Run the code above in your browser using DataLab