This function converts a variable into a factor, but preserves variable and value label attributes. See 'Examples'.
to_factor(x, ..., add.non.labelled = FALSE, ref.lvl = NULL)
A vector or data frame.
Optional, unquoted names of variables that should be selected for
further processing. Required, if x
is a data frame (and no
vector) and only selected variables from x
should be processed.
You may also use functions like :
or dplyr's select_helpers
.
See 'Examples' or package-vignette.
Logical, if TRUE
, non-labelled values also
get value labels.
Numeric, specifies the reference level for the new factor. Use
this parameter if a different factor level than the lowest value
should be used as reference level. If NULL
, lowest value
will become the reference level. See ref_lvl
for
details.
A factor, including variable and value labels. If x
is a data frame, the complete data frame x
will be returned,
where variables specified in ...
are coerced
to factors (including variable and value labels);
if ...
is not specified, applies to all variables in the
data frame.
to_factor
converts numeric values into a factor with numeric
levels. to_label
, however, converts a vector into
a factor and uses value labels as factor levels.
to_value
to convert a factor into a numeric vector and
to_label
to convert a vector into a factor with labelled
factor levels.
# NOT RUN {
data(efc)
# normal factor conversion, loses value attributes
x <- as.factor(efc$e42dep)
frq(x)
# factor conversion, which keeps value attributes
x <- to_factor(efc$e42dep)
frq(x)
# create parially labelled vector
x <- set_labels(efc$e42dep,
labels = c(`1` = "independent", `4` = "severe dependency",
`9` = "missing value"))
# only copy existing value labels
to_factor(x)
get_labels(to_factor(x), include.values = "p")
# also add labels to non-labelled values
to_factor(x, add.non.labelled = TRUE)
get_labels(to_factor(x, add.non.labelled = TRUE), include.values = "p")
# Convert to factor, using different reference level
x <- to_factor(efc$e42dep)
str(x)
table(x)
x <- to_factor(efc$e42dep, ref.lvl = 3)
str(x)
table(x)
# easily coerce specific variables in a data frame to factor
# and keep other variables, with their class preserved
to_factor(efc, e42dep, e16sex, c172code)
# use select-helpers from dplyr-package
library(dplyr)
to_factor(efc, contains("cop"), c161sex:c175empl)
# }
Run the code above in your browser using DataLab