# NOT RUN {
library(haven)
# create labelled integer
x <- labelled(
c(1, 2, 1, 3, 4, 1),
c(Male = 1, Female = 2, Refused = 3, "N/A" = 4)
)
frq(x)
x <- labelled(
c(1:3, tagged_na("a", "c", "z"), 4:1, 2:3),
c("Agreement" = 1, "Disagreement" = 4, "First" = tagged_na("c"),
"Refused" = tagged_na("a"), "Not home" = tagged_na("z"))
)
frq(x)
# in a pipe
data(efc)
library(dplyr)
efc %>%
select(e42dep, e15relat, c172code) %>%
frq()
# or:
# frq(efc, e42dep, e15relat, c172code)
# with grouped data frames, in a pipe
efc %>%
group_by(e16sex, c172code) %>%
frq(e16sex, c172code, e42dep)
# with select-helpers: all variables from the COPE-Index
# (which all have a "cop" in their name)
frq(efc, contains("cop"))
# all variables from column "c161sex" to column "c175empl"
frq(efc, c161sex:c175empl)
# for non-labelled data, variable name is printed,
# and "label" column is removed from output
data(iris)
frq(iris, Species)
# group variables with large range
frq(efc, c160age)
frq(efc, c160age, auto.grp = 5)
# group string values
# }
# NOT RUN {
dummy <- efc %>% dplyr::select(3)
dummy$words <- sample(
c("Hello", "Helo", "Hole", "Apple", "Ape",
"New", "Old", "System", "Systemic"),
size = nrow(dummy),
replace = TRUE
)
frq(dummy)
frq(dummy, grp.strings = 2)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab