Learn R Programming

skewMLRM (version 1.6)

summary.skewMLRM: Print a summary for a object estimate.xxx

Description

Summarizes the results for a object of the class "skewMLRM".

Usage

# S3 method for skewMLRM
summary(object, ...)

Value

A complete summary for the coefficients extracted from a skewMLRM object. If the object was generated by function distMahal, the summary is related to the Mahalanobis distances.

Arguments

object

an object of the class "skewMLRM". See details for supported models.

...

for extra arguments

Author

Clecio Ferreira, Diego Gallardo and Camila Zeller

Details

Supported models are:

In MSMN class: multivariate normal (MN), multivariate Student t (MT), multivariate slash (MSL), multivariate contaminated normal (MCN). See Lange and Sinsheimer (1993) for details.

In MSMSN class: multivariate skew-normal (MSN), multivariate skew-T (MSTT), multivariate skew-slash (MSSL2), multivariate skew-contaminated normal (MSCN2). See Zeller, Lachos and Vilca-Labra (2011) for details.

In MSSMN class: MSN, multivariate skew-t-normal (MSTN), multivariate skew-slash normal (MSSL), multivariate skew-contaminated normal (MSCN). See Louredo, Zeller and Ferreira (2021) for details.

In MSMSNC class: multivariate skew-normal-Cauchy (MSNC), multivariate skew-t-Expected-Cauchy (MSTEC), multivariate skew-slash-Expected-Cauchy (MSSLEC), multivariate skew-contaminated-Expected-Cauchy (MSCEC). See Kahrari et al. (2020) for details.

Note: the MSN distribution belongs to both, MSMSN and MSSMN classes.

The functions which generate an object of the class "skewMLRM" are

estimate.xxx: where xxx can be MN, MT, MSL, MCN, MSN, MSTN, MSSL, MSCN, MSTT, MSSL2, MSCN2, MSNC, MSTEC, MSSLEC or MSCEC.

choose.yyy: where yyy can be MSMN, MSSMN, MSMSN, MSMSNC or models.

choose2, mbackcrit, mbacksign and distMahal.

References

Kahrari, F., Arellano-Valle, R.B., Ferreira, C.S., Gallardo, D.I. (2020) Some Simulation/computation in multivariate linear models of scale mixtures of skew-normal-Cauchy distributions. Communications in Statistics - Simulation and Computation. In press. DOI: 10.1080/03610918.2020.1804582

Lange, K., Sinsheimer, J.S. (1993). Normal/independent distributions and their applications in robust regression. Journal of Computational and Graphical Statistics 2, 175-198.

Louredo, G.M.S., Zeller, C.B., Ferreira, C.S. (2021). Estimation and influence diagnostics for the multivariate linear regression models with skew scale mixtures of normal distributions. Sankhya B. In press. DOI: 10.1007/s13571-021-00257-y

Zeller, C.B., Lachos, V.H., Vilca-Labra, F.E. (2011). Local influence analysis for regression models with scale mixtures of skew-normal distributions. Journal of Applied Statistics 38, 343-368.

Examples

Run this code
data(ais, package="sn") ##Australian Institute of Sport data set
attach(ais)
##It is considered a bivariate regression model
##with Hg and SSF as response variables and
##Hc, Fe, Bfat and LBM as covariates
y<-cbind(Hg,SSF)
n<-nrow(y); m<-ncol(y)
X.aux=model.matrix(~Hc+Fe+Bfat+LBM)
p<-ncol(X.aux)
X<-array(0,dim=c(2*p,m,n))
for(i in 1:n) {
    X[1:p,1,i]=X.aux[i,,drop=FALSE]
    X[p+1:p,2,i]=X.aux[i,,drop=FALSE]
}
##See the covariate matrix X
##X
# \donttest{
fit.MN=estimate.MN(y, X)     #fit the MN distribution
summary(fit.MN)              #summary for the fit
#
fit.MSN=estimate.MSN(y, X)   #fit the MSN distribution
summary(fit.MSN)             #summary for the fit
# }

Run the code above in your browser using DataLab