data(ais, package="sn") ##Australian Institute of Sport data set
attach(ais)
##It is considered a bivariate regression model
##with Hg and SSF as response variables and
##Hc, Fe, Bfat and LBM as covariates
y<-cbind(Hg,SSF)
n<-nrow(y); m<-ncol(y)
X.aux=model.matrix(~Hc+Fe+Bfat+LBM)
p<-ncol(X.aux)
X<-array(0,dim=c(2*p,m,n))
for(i in 1:n) {
X[1:p,1,i]=X.aux[i,,drop=FALSE]
X[p+1:p,2,i]=X.aux[i,,drop=FALSE]
}
##See the regressor matrix X
##X
##Perform covariates selection in the MN distribution
##based on a significance level of 1%, 5% and 10%
# \donttest{
##may take some time on some systems
fit.MN.01=mbacksign(y, X, dist="MN", sign=0.01)
fit.MN.05=mbacksign(y, X, dist="MN", sign=0.05)
fit.MN.10=mbacksign(y, X, dist="MN", sign=0.10)
summary(fit.MN.01)
summary(fit.MN.05)
summary(fit.MN.10)
##identical process in the MCN model with
##significance level of 5%
fit.MCN=mbacksign(y, X, dist="MCN")
summary(fit.MCN)
##for MSSL model
fit.MSSL=mbacksign(y, X, dist="MSSL")
summary(fit.MSSL)
##for MSNC model
fit.MSNC=mbacksign(y, X, dist="MSNC")
summary(fit.MSNC)
# }
Run the code above in your browser using DataLab