In our model the data are drawn from LogN(mu_i + log(c_ij), tau_i) The prior for c_ij is a categorical prior with category probabilities pi1, ..., pik, and c_ij can take values 1, ..., k where k is the length of pi. This function samples from the posterior of pi = pi1, ..., pik, assuming that pi follows Dirichlet(priorAlphas)
postPi(ci, priorAlphas)
Numeric vector
Integer vector, all of the sampled cij values for all individuals
Numeric vector, prior dirichlet parameters for pi