An implementation to minimize r-stress by majorization with ratio, interval, monotonic spline and ordinal optimal scaling. Uses a repeat loop.
rStressMin(
delta,
r = 0.5,
type = c("ratio", "interval", "ordinal", "mspline"),
ties = "primary",
weightmat = 1 - diag(nrow(delta)),
init = NULL,
ndim = 2,
acc = 1e-06,
itmax = 10000,
verbose = FALSE,
principal = FALSE,
spline.degree = 2,
spline.intKnots = 2
)rstressMin(
delta,
r = 0.5,
type = c("ratio", "interval", "ordinal", "mspline"),
ties = "primary",
weightmat = 1 - diag(nrow(delta)),
init = NULL,
ndim = 2,
acc = 1e-06,
itmax = 10000,
verbose = FALSE,
principal = FALSE,
spline.degree = 2,
spline.intKnots = 2
)
rstressmds(
delta,
r = 0.5,
type = c("ratio", "interval", "ordinal", "mspline"),
ties = "primary",
weightmat = 1 - diag(nrow(delta)),
init = NULL,
ndim = 2,
acc = 1e-06,
itmax = 10000,
verbose = FALSE,
principal = FALSE,
spline.degree = 2,
spline.intKnots = 2
)
rstress(
delta,
r = 0.5,
type = c("ratio", "interval", "ordinal", "mspline"),
ties = "primary",
weightmat = 1 - diag(nrow(delta)),
init = NULL,
ndim = 2,
acc = 1e-06,
itmax = 10000,
verbose = FALSE,
principal = FALSE,
spline.degree = 2,
spline.intKnots = 2
)
a 'smacofP' object (inheriting from 'smacofB', see smacofSym
). It is a list with the components
delta: Observed, untransformed dissimilarities
tdelta: Observed explicitly transformed dissimilarities, normalized
dhat: Explicitly transformed dissimilarities (dhats), optimally scaled and normalized
confdist: Transformed fitted configuration distances
iord: Optimally scaled disparities function
conf: Matrix of fitted configuration
stress: Default stress (stress 1; sqrt of explicitly normalized stress)
spp: Stress per point
ndim: Number of dimensions
weightmat: Weighting matrix as supplied
resmat: Residual matrix
rss: Sum of residuals
init: The starting configuration
model: Name of MDS model
niter: Number of iterations
nobj: Number of objects
type: Type of optimal scaling
call : the matched call
stress.m: Default stress (stress-1^2)
alpha: Alpha matrix
sigma: Stress
parameters, pars, theta: Optimal transformation parameter
tweightmat: Transformed weighting matrix (here NULL)
dist object or a symmetric, numeric data.frame or matrix of distances
power of the transformation of the fitted distances (corresponds to kappa/2 in power stress); defaults to 0.5 for standard stress
what type of MDS to fit. Currently one of "ratio", "interval", "mspline" or "ordinal". Default is "ratio".
the handling of ties for ordinal (nonmetric) MDS. Possible are "primary" (default), "secondary" or "tertiary".
a matrix of finite weights.
starting configuration
dimension of the configuration; defaults to 2
numeric accuracy of the iteration. Default is 1e-6.
maximum number of iterations. Default is 10000.
should fitting information be printed; if > 0 then yes
If 'TRUE', principal axis transformation is applied to the final configuration
Degree of the spline for ‘mspline’ MDS type
Number of interior knots of the spline for ‘mspline’ MDS type
smacofSym
dis<-smacof::kinshipdelta
## ordinal MDS
res<-rStressMin(as.matrix(dis), type = "ordinal", r = 1, itmax = 1000)
res
summary(res)
plot(res)
## spline MDS
ress<-rStressMin(as.matrix(dis), type = "mspline", r = 1,
itmax = 1000)
ress
plot(ress,"Shepard")
Run the code above in your browser using DataLab