Learn R Programming

smacofx (version 1.6-1)

powerStressMin: Power Stress SMACOF

Description

An implementation to minimize power stress by majorization with ratio or interval optimal scaling. Usually more accurate but slower than powerStressFast. Uses a repeat loop.

Usage

powerStressMin(
  delta,
  kappa = 1,
  lambda = 1,
  nu = 1,
  type = "ratio",
  weightmat = 1 - diag(nrow(delta)),
  init = NULL,
  ndim = 2,
  acc = 1e-06,
  itmax = 10000,
  verbose = FALSE,
  principal = FALSE
)

powerstressMin( delta, kappa = 1, lambda = 1, nu = 1, type = "ratio", weightmat = 1 - diag(nrow(delta)), init = NULL, ndim = 2, acc = 1e-06, itmax = 10000, verbose = FALSE, principal = FALSE )

postmds( delta, kappa = 1, lambda = 1, nu = 1, type = "ratio", weightmat = 1 - diag(nrow(delta)), init = NULL, ndim = 2, acc = 1e-06, itmax = 10000, verbose = FALSE, principal = FALSE )

pstressMin( delta, kappa = 1, lambda = 1, nu = 1, type = "ratio", weightmat = 1 - diag(nrow(delta)), init = NULL, ndim = 2, acc = 1e-06, itmax = 10000, verbose = FALSE, principal = FALSE )

pStressMin( delta, kappa = 1, lambda = 1, nu = 1, type = "ratio", weightmat = 1 - diag(nrow(delta)), init = NULL, ndim = 2, acc = 1e-06, itmax = 10000, verbose = FALSE, principal = FALSE )

pstressmds( delta, kappa = 1, lambda = 1, nu = 1, type = "ratio", weightmat = 1 - diag(nrow(delta)), init = NULL, ndim = 2, acc = 1e-06, itmax = 10000, verbose = FALSE, principal = FALSE )

Value

a 'smacofP' object (inheriting from 'smacofB', see smacofSym). It is a list with the components

  • delta: Observed, untransformed dissimilarities

  • tdelta: Observed explicitly transformed dissimilarities, normalized

  • dhat: Explicitly transformed dissimilarities (dhats), optimally scaled and normalized

  • confdist: Transformed fitted configuration distances

  • conf: Matrix of fitted configuration

  • stress: Default stress (stress 1; sqrt of explicitly normalized stress)

  • spp: Stress per point

  • ndim: Number of dimensions

  • model: Name of smacof model

  • niter: Number of iterations

  • nobj: Number of objects

  • type: Type of MDS model

  • weightmat: weighting matrix as supplied

  • stress.m: Default stress (stress-1^2)

  • tweightmat: transformed weighthingmatrix (here weightmat^nu)

Arguments

delta

dist object or a symmetric, numeric data.frame or matrix of distances

kappa

power of the transformation of the fitted distances; defaults to 1

lambda

the power of the transformation of the proximities; defaults to 1

nu

the power of the transformation for weightmat; defaults to 1

type

what type of MDS to fit. One of "ratio" or "interval". Default is "ratio".

weightmat

a matrix of finite weights or dist object

init

starting configuration

ndim

dimension of the configuration; defaults to 2

acc

numeric accuracy of the iteration. Default is 1e-6.

itmax

maximum number of iterations. Default is 10000.

verbose

should iteration output be printed; if > 1 then yes

principal

If 'TRUE', principal axis transformation is applied to the final configuration

See Also

smacofSym

Examples

Run this code
dis<-smacof::kinshipdelta
res<-powerStressMin(dis,type="ratio",kappa=2,lambda=1.5,itmax=1000)
res
summary(res)
plot(res)

Run the code above in your browser using DataLab