# NOT RUN {
library("smartdata")
data(iris0, package = "imbalance")
super_iris <- clean_noise(iris, method = "AENN", class_attr = "Species", k = 3)
super_iris <- clean_noise(iris, "GE", class_attr = "Species", k = 5, relabel_th = 2)
super_iris <- clean_noise(iris, "HARF", class_attr = "Species",
num_folds = 10, agree_level = 0.7, num_trees = 5)
# }
# NOT RUN {
super_iris <- clean_noise(iris0, "TomekLinks")
super_iris <- clean_noise(iris, "hybrid", class_attr = "Species",
consensus = FALSE, action = "repair")
super_iris <- clean_noise(iris, "Mode", class_attr = "Species", type = "iterative",
action = "repair", epsilon = 0.05,
num_iterations = 200, alpha = 1, beta = 1)
super_iris <- clean_noise(iris, "INFFC", class_attr = "Species", consensus = FALSE,
prob_noisy = 0.2, num_iterations = 3, k = 5, threshold = 0)
super_iris <- clean_noise(iris, "IPF", class_attr = "Species", consensus = FALSE,
num_folds = 3, prob_noisy = 0.2,
prob_good = 0.5, num_iterations = 3)
super_iris <- clean_noise(iris, "ORBoost", class_attr = "Species",
num_boosting = 20, threshold = 11, num_adaboost = 20)
super_iris <- clean_noise(iris, "PF", class_attr = "Species", prob_noisy = 0.01,
num_iterations = 5, prob_good = 0.5, theta = 0.8)
super_iris <- clean_noise(iris, "C45robust", class_attr = "Species", num_folds = 5)
# }
Run the code above in your browser using DataLab