# NOT RUN {
library("smartdata")
data(africa, package = "Amelia")
data(nhanes, package = "mice")
data(ozone, package = "missMDA")
data(vnf, package = "missMDA")
data(orange, package = "missMDA")
data(sleep, package = "VIM")
super_nhanes <- impute_missing(nhanes, "gibbs_sampling")
super_nhanes <- impute_missing(nhanes, "gibbs_sampling", exclude = "chl")
# Use a different method for every column
impute_methods <- c("pmm", "midastouch", "norm_nob", "norm_boot")
super_nhanes <- impute_missing(nhanes, "gibbs_sampling", imputation = impute_methods)
super_nhanes <- impute_missing(nhanes, "central_imputation")
super_africa <- impute_missing(africa, "knn_imputation")
# Execute knn imputation with non default value for k
super_africa <- impute_missing(africa, "knn_imputation", k = 5)
super_africa <- impute_missing(africa, "expect_maximization", exclude = "country")
super_africa <- impute_missing(africa, "rf_imputation", num_iterations = 15,
num_trees = 200, bootstrap = FALSE)
# Examples of calls to 'PCA imputation' with wholly numeric datasets
# }
# NOT RUN {
super_orange <- impute_missing(orange, "PCA_imputation", num_dimensions = 5,
imputation = "EM")
super_orange <- impute_missing(orange, "PCA_imputation", num_dimensions = 5,
imputation = "Regularized")
# }
# NOT RUN {
super_orange <- impute_missing(orange, "PCA_imputation", num_dimensions = 5,
imputation = "Regularized", random_init = TRUE)
# Examples of calls to 'MCA imputation' with wholly categorical datasets
# }
# NOT RUN {
super_vnf <- impute_missing(vnf, "MCA_imputation", num_dimensions = 5,
imputation = "EM")
super_vnf <- impute_missing(vnf, "MCA_imputation", num_dimensions = 5,
imputation = "Regularized")
# }
# NOT RUN {
super_vnf <- impute_missing(vnf, "MCA_imputation", num_dimensions = 5,
imputation = "Regularized", random_init = TRUE)
# Examples of calls to 'FAMD imputation' with hybrid datasets
# }
# NOT RUN {
super_ozone <- impute_missing(ozone, "FAMD_imputation", num_dimensions = 5,
imputation = "EM", exclude = c("Ne12", "Vx15"))
super_ozone <- impute_missing(ozone, "FAMD_imputation", num_dimensions = 5,
imputation = "Regularized")
# }
# NOT RUN {
super_ozone <- impute_missing(ozone, "FAMD_imputation", num_dimensions = 5,
imputation = "Regularized", random_init = TRUE)
# Examples of hotdeck, iterative robust and reggresion imputations
super_sleep <- impute_missing(sleep, "hotdeck")
super_sleep <- impute_missing(sleep, "iterative_robust", initialization = "median",
num_iterations = 1000)
super_sleep <- impute_missing(sleep, "regression_imputation",
formula = Dream+NonD~BodyWgt+BrainWgt)
# Examples of adaptative shrinkage imputation
super_ozone <- impute_missing(ozone, "ATN", sigma = 2.2)
super_ozone <- impute_missing(ozone, "ATN", lambda = 0.025, gamma = 2.5)
super_ozone <- impute_missing(ozone, "ATN", tune = "SURE")
# }
Run the code above in your browser using DataLab