cepp.test
implements the Cluster Evaluation
Permutation Procedure test of Turnbull et al. (1990)
for finding disease clusters.
cepp.test(
coords,
cases,
pop,
nstar,
ex = sum(cases)/sum(pop) * pop,
nsim = 499,
alpha = 0.1,
longlat = FALSE,
simdist = "multinomial"
)
Returns a smerc_cluster
object.
An
The number of cases observed in each region.
The population size associated with each region.
The size of the at-risk population in each window.
The expected number of cases for each region. The default is calculated under the constant risk hypothesis.
The number of simulations from which to compute the p-value.
The significance level to determine whether a cluster is signficant. Default is 0.10.
The default is FALSE
, which
specifies that Euclidean distance should be used. If
longlat
is TRUE
, then the great circle
distance is used to calculate the intercentroid
distance.
A character string indicating whether the
simulated data should come from a "multinomial"
or "poisson"
distribution. The default is
"multinomial"
, which fixes the total number of
cases observed in each simulated data set.
Joshua French
Bruce W. Turnbull, Eric J. Iwano, William S. Burnett, Holly L. Howe, Larry C. Clark (1990). Monitoring for Clusters of Disease: Application to Leukemia Incidence in Upstate New York, American Journal of Epidemiology, 132(supp1):136-143. <doi:10.1093/oxfordjournals.aje.a115775>
print.smerc_cluster
,
summary.smerc_cluster
,
plot.smerc_cluster
,
scan.test
data(nydf)
data(nyw)
coords <- with(nydf, cbind(x, y))
cases <- nydf$cases
pop <- nydf$pop
out <- cepp.test(
coords = coords, cases = cases, pop = pop,
nstar = 1000, alpha = 0.99
)
plot(out)
summary(out)
# better plotting
if (require("sf", quietly = TRUE)) {
data(nysf)
plot(st_geometry(nysf), col = color.clusters(out))
}
Run the code above in your browser using DataLab