
Last chance! 50% off unlimited learning
Sale ends in
Function calculates several error measures using the provided data for the holdout sample.
Accuracy(holdout, forecast, actual, digits = 3)
The vector of the holdout values.
The vector of forecasts produced by a model.
The vector of actual in-sample values.
Number of digits of the output.
The functions returns the named vector of errors:
MPE,
cbias,
MAPE,
MASE,
sMAE,
RelMAE,
RelMSE,
RelAME,
sMSE,
sPIS,
sCE.
For the details on these errors, see Errors.
Fildes, R. (1992). The evaluation of extrapolative forecasting methods. International Journal of Forecasting, 8, pp.81-98.
Hyndman R.J., Koehler A.B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22, pp.679-688.
Makridakis, S. (1993). Accuracy measures: Theoretical and practical concerns. International Journal of Forecasting, 9, pp.527-529.
Petropoulos F., Kourentzes N. (2015). Forecast combinations for intermittent demand. Journal of the Operational Research Society, 66, pp.914-924.
Wallstrom P., Segerstedt A. (2010). Evaluation of forecasting error measurements and techniques for intermittent demand. International Journal of Production Economics, 128, pp.625-636.
# NOT RUN {
y <- rnorm(100,10,2)
esmodel <- es(y[1:90],model="ANN",h=10)
Accuracy(y[91:100],esmodel$forecast,y[1:90],digits=5)
# }
Run the code above in your browser using DataLab