Learn R Programming

smooth (version 4.3.0)

oes: Occurrence ETS model

Description

Function returns the occurrence part of iETS model with the specified probability update and model types.

Usage

oes(y, model = "MNN", persistence = NULL, initial = "o",
  initialSeason = NULL, phi = NULL, occurrence = c("fixed", "general",
  "odds-ratio", "inverse-odds-ratio", "direct", "auto", "none"),
  ic = c("AICc", "AIC", "BIC", "BICc"), h = 10, holdout = FALSE,
  bounds = c("usual", "admissible", "none"), silent = c("all", "graph",
  "legend", "output", "none"), xreg = NULL, regressors = c("use",
  "select"), initialX = NULL, ...)

Arguments

Value

The object of class "occurrence" is returned. It contains following list of values:

  • model - the type of the estimated ETS model;

  • timeElapsed - the time elapsed for the construction of the model;

  • fitted - the fitted values for the probability;

  • fittedModel - the fitted values of the underlying ETS model, where applicable (only for occurrence=c("o","i","d"));

  • forecast - the forecast of the probability for h observations ahead;

  • forecastModel - the forecast of the underlying ETS model, where applicable (only for occurrence=c("o","i","d"));

  • lower - the lower bound of the interval if interval!="none";

  • upper - the upper bound of the interval if interval!="none";

  • lowerModel - the lower bound of the interval of the underlying ETS model if interval!="none";

  • upperModel - the upper bound of the interval of the underlying ETS model if interval!="none";

  • states - the values of the state vector;

  • logLik - the log-likelihood value of the model;

  • nParam - the number of parameters in the model (the matrix is returned);

  • residuals - the residuals of the model;

  • y - actual values of occurrence (zeros and ones).

  • persistence - the vector of smoothing parameters;

  • phi - the value of the damped trend parameter;

  • initial - initial values of the state vector;

  • initialSeason - the matrix of initials seasonal states;

  • occurrence - the type of the occurrence model;

  • updateX - boolean, defining, if the states of exogenous variables were estimated as well.

  • initialX - initial values for parameters of exogenous variables.

  • persistenceX - persistence vector g for exogenous variables.

  • transitionX - transition matrix F for exogenous variables.

  • accuracy - The error measures for the forecast (in case of holdout=TRUE).

  • B - the vector of all the estimated parameters (in case of "odds-ratio", "inverse-odds-ratio" and "direct" models).

Details

The function estimates probability of demand occurrence, using the selected ETS state space models.

For the details about the model and its implementation, see the respective vignette: vignette("oes","smooth")

References

  • Svetunkov, I., Boylan, J.E., 2023a. iETS: State Space Model for Intermittent Demand Forecastings. International Journal of Production Economics. 109013. tools:::Rd_expr_doi("10.1016/j.ijpe.2023.109013")

  • Teunter R., Syntetos A., Babai Z. (2011). Intermittent demand: Linking forecasting to inventory obsolescence. European Journal of Operational Research, 214, 606-615.

  • Croston, J. (1972) Forecasting and stock control for intermittent demands. Operational Research Quarterly, 23(3), 289-303.

See Also

adam, oesg, es

Examples

Run this code

y <- rpois(100,0.1)
oes(y, occurrence="auto")

oes(y, occurrence="f")

Run the code above in your browser using DataLab