data - Time series vector (or matrix if nsim>1) of the generated
series.
states - Matrix (or array if nsim>1) of states. States are in
columns, time is in rows.
initial - Vector (or matrix) of initial values.
probability - vector of probabilities used in the simulation.
intermittent - type of the intermittent model used.
residuals - Error terms used in the simulation. Either vector or matrix,
depending on nsim.
occurrence - Values of occurrence variable. Once again, can be either
a vector or a matrix...
logLik - Log-likelihood of the constructed model.
Details
For the information about the function, see the vignette:
vignette("simulate","smooth")
References
Svetunkov, I., 2023. Smooth Forecasting with the Smooth Package in R. arXiv.
tools:::Rd_expr_doi("10.48550/arXiv.2301.01790")
Snyder, R. D., 1985. Recursive Estimation of Dynamic Linear Models.
Journal of the Royal Statistical Society, Series B (Methodological) 47 (2), 272-276.
Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008)
Forecasting with exponential smoothing: the state space approach,
Springer-Verlag. tools:::Rd_expr_doi("10.1007/978-3-540-71918-2").
# Create 40 observations of quarterly data using AAA model with errors from normal distributionsma10 <- sim.sma(order=10,frequency=4,obs=40,randomizer="rnorm",mean=0,sd=100)