Learn R Programming

smooth

R:

Python:

The smooth package implements Single Source of Error (SSOE) state-space models for forecasting and time series analysis, available for both R and Python.

Installation

R (CRAN):

install.packages("smooth")

R (github):

if (!require("remotes")) install.packages("remotes")
remotes::install_github("config-i1/smooth")

Python (PyPI):

# Not yet available

Python (github):

pip install "git+https://github.com/config-i1/smooth.git@master#subdirectory=python"

For development versions and system requirements, see the Installation wiki page.

Quick Examples

R

library(smooth)

# ADAM - the recommended function for most tasks
model <- adam(y, model="ZXZ", lags=12)
forecast(model, h=12)

# Exponential Smoothing
model <- es(y, model="ZXZ", lags=12)

# Automatic model selection for ETS+ARIMA and distributions
model <- auto.adam(y, model="ZZZ",
                   orders=list(ar=2, i=2, ma=2, select=TRUE))

Python

from smooth import ADAM, ES

# ADAM model
model = ADAM(model="ZXZ", lags=12)
model.fit(y)
model.predict(h=12)

# Exponential Smoothing
model = ES(model="ZXZ")
model.fit(y)

Documentation

Full documentation is available on the GitHub Wiki, including:

Book: Svetunkov, I. (2023). Forecasting and Analytics with the Augmented Dynamic Adaptive Model (ADAM). Chapman and Hall/CRC. Online: https://openforecast.org/adam/

Copy Link

Version

Install

install.packages('smooth')

Monthly Downloads

3,629

Version

4.4.0

License

LGPL-2.1

Issues

Pull Requests

Stars

Forks

Maintainer

Ivan Svetunkov

Last Published

February 5th, 2026

Functions in smooth (4.4.0)

cma

Centered Moving Average
msarima

Multiple Seasonal ARIMA
msdecompose

Multiple seasonal classical decomposition
ces

Complex Exponential Smoothing
is.smooth

Smooth classes checkers
es

Exponential Smoothing in SSOE state space model
forecast.adam

Forecasting time series using smooth functions
gum

Generalised Univariate Model
accuracy.smooth

Error measures for an estimated model
adam

ADAM is Augmented Dynamic Adaptive Model
rmultistep

Multiple steps ahead forecast errors
multicov

Function returns the multiple steps ahead covariance matrix of forecast errors
sim.ces

Simulate Complex Exponential Smoothing
reexports

Objects exported from other packages
plot.adam

Plots for the fit and states
reapply

Reapply the model with randomly generated initial parameters and produce forecasts
orders

Functions that extract values from the fitted model
oesg

Occurrence ETS, general model
pls

Prediction Likelihood Score
oes

Occurrence ETS model
smooth

Smooth package
sim.ssarima

Simulate SSARIMA
sma

Simple Moving Average
sim.gum

Simulate Generalised Exponential Smoothing
sowhat

Function returns the ultimate answer to any question
sim.es

Simulate Exponential Smoothing
smoothCombine

Combination of forecasts of state space models
sim.sma

Simulate Simple Moving Average
sparma

Sparse ARMA Model in State Space Form
sim.oes

Simulate Occurrence Part of ETS model
ssarima

State Space ARIMA