pickands: Compute original and smoothed version of Pickand's estimator
Description
Given an ordered sample of either exceedances or upper order statistics which is to be modeled using a GPD, this
function provides Pickand's estimator of the shape parameter $\gamma \in [-1,0]$.
Precisely, for $k=4, \ldots, n$
$$\hat \gamma^k_{\rm{Pick}} = \frac{1}{\log 2} \log \Bigl(\frac{H^{-1}((n-r_k(H)+1)/n)-H^{-1}((n-2r_k(H) +1)/n)}{H^{-1}((n-2r_k(H) +1)/n)-H^{-1}((n-k+1)/n)} \Bigr)$$
for $H$ either the empirical or the distribution function $\hat F_n$ based on the log--concave density
estimator and
$$r_k(H) = \lfloor k/4 \rfloor$$
if $H$ is the empirical distribution function and
$$r_k(H) = k / 4$$
if $H = \hat F_n$.
Usage
pickands(x)
Arguments
x
Sample of strictly increasing observations.
Value
n x 3 matrix with columns: indices $k$, Pickand's estimator using the smoothing method, and
the ordinary Pickand's estimator based on the order statistics.
References
Mueller, S. and Rufibach K. (2006).
Smooth tail index estimation.
Preprint.
Pickands, J. (1975).
Statistical inference using extreme order statistics.
Annals of Statistics3, 119--131.
See Also
Other approaches to estimate $\gamma$ based on the fact that the density is log--concave, thus
$\gamma \in [-1,0]$, are available as the functions falk, falkMVUE.