
Given independent and identically distributed observations
Kaspar Rufibach (maintainer), kaspar.rufibach@gmail.com ,
http://www.kasparrufibach.ch
Samuel Mueller, samuel.muller@mq.edu.au
Kaspar Rufibach acknowledges support by the Swiss National Science Foundation SNF, http://www.snf.ch
Package: | smoothtail |
Type: | Package |
Version: | 2.0.5 |
Date: | 2016-07-12 |
License: | GPL (>=2) |
Use this package to estimate the shape parameter
pickands
falk
falkMVUE
generalizedPick
This package depends on the package logcondens for estimation of a log--concave density: all the above functions take as first argument a dlc
object as generated by logConDens
in logcondens.
Additionally, functions for density, distribution function, quantile function and random number generation for
a GPD with location parameter 0, shape parameter
dgpd
pgpd
qgpd
rgpd
.
Let us shortly clarify what we mean with log--concave density estimation. Suppose we are given an ordered sample
over all concave functions
for
Duembgen, L. and Rufibach, K. (2009) Maximum likelihood estimation of a log--concave density and its distribution function: basic properties and uniform consistency. Bernoulli, 15(1), 40--68.
Duembgen, L., Huesler, A. and Rufibach, K. (2010) Active set and EM algorithms for log-concave densities based on complete and censored data. Technical report 61, IMSV, Univ. of Bern, available at http://arxiv.org/abs/0707.4643.
Mueller, S. and Rufibach K. (2009). Smooth tail index estimation. J. Stat. Comput. Simul., 79, 1155--1167.
Mueller, S. and Rufibach K. (2008). On the max--domain of attraction of distributions with log--concave densities. Statist. Probab. Lett., 78, 1440--1444.
Rufibach K. (2006) Log-concave Density Estimation and Bump Hunting for i.i.d. Observations.
PhD Thesis, University of Bern, Switzerland and Georg-August University of Goettingen, Germany, 2006.
Available at https://biblio.unibe.ch/download/eldiss/06rufibach_k.pdf.
Rufibach, K. (2007) Computing maximum likelihood estimators of a log-concave density function. J. Stat. Comput. Simul., 77, 561--574.
Package logcondens.
# generate ordered random sample from GPD
set.seed(1977)
n <- 20
gam <- -0.75
x <- rgpd(n, gam)
# compute known endpoint
omega <- -1 / gam
# estimate log-concave density, i.e. generate dlc object
est <- logConDens(x, smoothed = FALSE, print = FALSE, gam = NULL, xs = NULL)
# plot distribution functions
s <- seq(0.01, max(x), by = 0.01)
plot(0, 0, type = 'n', ylim = c(0, 1), xlim = range(c(x, s))); rug(x)
lines(s, pgpd(s, gam), type = 'l', col = 2)
lines(x, 1:n / n, type = 's', col = 3)
lines(x, est$Fhat, type = 'l', col = 4)
legend(1, 0.4, c('true', 'empirical', 'estimated'), col = c(2 : 4), lty = 1)
# compute tail index estimators for all sensible indices k
falk.logcon <- falk(est)
falkMVUE.logcon <- falkMVUE(est, omega)
pick.logcon <- pickands(est)
genPick.logcon <- generalizedPick(est, c = 0.75, gam0 = -1/3)
# plot smoothed and unsmoothed estimators versus number of order statistics
plot(0, 0, type = 'n', xlim = c(0,n), ylim = c(-1, 0.2))
lines(1:n, pick.logcon[, 2], col = 1); lines(1:n, pick.logcon[, 3], col = 1, lty = 2)
lines(1:n, falk.logcon[, 2], col = 2); lines(1:n, falk.logcon[, 3], col = 2, lty = 2)
lines(1:n, falkMVUE.logcon[,2], col = 3); lines(1:n, falkMVUE.logcon[,3], col = 3,
lty = 2)
lines(1:n, genPick.logcon[, 2], col = 4); lines(1:n, genPick.logcon[, 3], col = 4,
lty = 2)
abline(h = gam, lty = 3)
legend(11, 0.2, c("Pickands", "Falk", "Falk MVUE", "Generalized Pickands'"),
lty = 1, col = 1:8)
Run the code above in your browser using DataLab