dsn(x, location = 0, scale = 1, shape = 0, dp = NULL, log = FALSE)
psn(x, location = 0, scale = 1, shape = 0, dp = NULL, engine, ...)
qsn(p, location = 0, scale = 1, shape = 0, dp = NULL, tol = 1e-8, engine, ...)
rsn(n = 1, location = 0, scale = 1, shape = 0, dp = NULL)
NA
s) and Inf
's
are allowed.NA
s) are allowed.psn
and qsn
, it must be of length 1.dp
is specified, the individual
parameters cannot be set.qsn
.dsn
(default FALSE
).
When TRUE
, the logarithm of the density values is returned."T.Owen"
or "biv.nt.prob"
(the latter from package
mnormt
).
If the parameter is missing, a default selection rule is applied.T.Owen
dsn
), probability (psn
),
quantile (qsn
) or random sample (rsn
)
from the skew-normal distribution with given location
, scale
and shape
parameters.psn
and qsn
make use either of function T.Owen
or biv.nt.prob
shape
parameter which regulates
skewness; when shape=0
, the skew-normal distribution reduces to the
normal one. The density of the SN distribution in the "normalized" case
having location=0
and scale=1
is
2*dnorm(x)*pnorm(shape*x)
.
A multivariate version of the distribution exists.
See the reference below for additional information.dmsn
, dst
, T.Owen
,
biv.nt.prob
pdf <- dsn(seq(-3,3,by=0.1), shape=3)
cdf <- psn(seq(-3,3,by=0.1), shape=3)
qu <- qsn(seq(0.1,0.9,by=0.1), shape=-2)
rn <- rsn(100, 5, 2, 5)
Run the code above in your browser using DataLab