dmsn(x, xi=rep(0,length(alpha)), Omega, alpha, tau=0, dp=NULL, log=FALSE)
pmsn(x, xi=rep(0,length(alpha)), Omega, alpha, tau=0, dp=NULL, ...)
rmsn(n=1, xi=rep(0,length(alpha)), Omega, alpha, tau=0, dp=NULL)dmsn, this is either a vector of length d,
where d=length(alpha), or a matrix with d columns,
giving the coordinates of the point(s) where the density must
be evaluated. For pmsnd representing the
location parameter of the distribution; see dmsn, xi can be a matrix;
in this case, its dimensions must agree with th(d,d);
see Inf values in alpha are not allowed.tau=0 (default) corresponds to
a SN distribution.xi, Omega and
alpha described above; default value FALSE.
If dp is assigned, individual parameters must not be specified.FALSE);
if TRUE, log-densities are returned.pmnormdmsn), or a single probability
(pmsn) or a matrix of random points (rmsn).(Omega,alpha)
parametrization adopted here is the one of Azzalini and Capitanio (1999).
Chapter 5 of Azzalini and Capitanio (2014) provides an extensive account,
including subsequent developments.Notice that the location vector xi does not represent the mean vector
of the distribution. Similarly, Omega is not the covariance
matrix of the distribution, although it is a covariance matrix.
pmsn makes use of pmnorm from package ...Azzalini, A. and Capitanio, A. (1999).
Statistical applications of the multivariate skew normal distribution.
J.Roy.Statist.Soc. B 61, 579--602. Full-length version
available at
Azzalini, A. with the collaboration of Capitanio, A. (2014). The Skew-Normal and Related Families. Cambridge University Press, IMS Monographs series.
dsn, dmst, dmnormx <- seq(-3,3,length=15)
xi <- c(0.5, -1)
Omega <- diag(2)
Omega[2,1] <- Omega[1,2] <- 0.5
alpha <- c(2,-6)
pdf <- dmsn(cbind(x, 2*x-1), xi, Omega, alpha)
rnd <- rmsn(10, xi, Omega, alpha)
p1 <- pmsn(c(2,1), xi, Omega, alpha)
p2 <- pmsn(c(2,1), xi, Omega, alpha, abseps=1e-12, maxpts=10000)Run the code above in your browser using DataLab