dsn(x, xi=0, omega=1, alpha=0, tau=0, dp=NULL, log=FALSE)
psn(x, xi=0, omega=1, alpha=0, tau=0, dp=NULL, engine, ...)
qsn(p, xi=0, omega=1, alpha=0, tau=0, dp=NULL, tol=1e-8, ...)
rsn(n=1, xi=0, omega=1, alpha=0, tau=0, dp=NULL)NA's) and Inf's
are allowed.NAs) are allowed+/- Inf is allowed.
With psn and qsn, it must be of length 1 if
engine="T.Owen".tau=0 (default) corresponds to
a SN distribution.dp
is specified, the individual parameters cannot be set.qsn.dsn (default FALSE).
When TRUE, the logarithm of the density values is returned."T.Owen" or "biv.nt.prob", the latter from
package mnormt. If tau != 0 or length(alpha)>1,
"biv.nt.proT.Owendsn), probability (psn), quantile (qsn)
or random sample (rsn) from the skew-normal distribution with given
xi, omega and alpha parameters or from the extended
skew-normal if tau!=0psn and qsn make use of function T.Owen
or biv.nt.probalpha parameter which regulates
asymmetry; when alpha=0, the skew-normal distribution reduces to
the normal one. The density function of the SN distribution
in the xi=0 and omega=1 is
2*dnorm(x)*pnorm(alpha*x).
An early discussion of the skew-normal distribution is given by
Azzalini (1985); see Section 3.3 for the ESN variant,
up to a slight difference in the parameterization.
An updated extensive account is provided by Chapter 2 of Azzalini and
Capitanio (2014); the ESN variant is presented Section 2.2.
A multivariate version of the distribution is examined in Chapter 5.Azzalini, A. with the collaboration of Capitanio, A. (2014). The Skew-Normal and Related Families. Cambridge University Press, IMS Monographs series.
psn:
T.Owen, biv.nt.prob
Related distributions: dmsn, dst,
dmstpdf <- dsn(seq(-3, 3, by=0.1), alpha=3)
cdf <- psn(seq(-3, 3, by=0.1), alpha=3)
q <- qsn(seq(0.1, 0.9, by=0.1), alpha=-2)
r <- rsn(100, 5, 2, 5)Run the code above in your browser using DataLab