# Training data
set.seed(1)
n = 100
d = 10
DATA = mydata(n, d)
# Testing data
set.seed(2015)
ntest = 100
TEST = mydata(ntest, d)
TEST.x = TEST[,1:d]
## Compute classification instability for knn, bnn, ownn, and snn with given parameters
nn=floor(n/2)
permIndex = sample(n)
predict1.knn = myknn(DATA[permIndex[1:nn],], TEST.x, K = 5)
predict2.knn = myknn(DATA[permIndex[-(1:nn)],], TEST.x, K = 5)
predict1.bnn = mybnn(DATA[permIndex[1:nn],], TEST.x, ratio = 0.5)
predict2.bnn = mybnn(DATA[permIndex[-(1:nn)],], TEST.x, ratio = 0.5)
predict1.ownn = myownn(DATA[permIndex[1:nn],], TEST.x, K = 5)
predict2.ownn = myownn(DATA[permIndex[-(1:nn)],], TEST.x, K = 5)
predict1.snn = mysnn(DATA[permIndex[1:nn],], TEST.x, lambda = 10)
predict2.snn = mysnn(DATA[permIndex[-(1:nn)],], TEST.x, lambda = 10)
mycis(predict1.knn, predict2.knn)
mycis(predict1.bnn, predict2.bnn)
mycis(predict1.ownn, predict2.ownn)
mycis(predict1.snn, predict2.snn)
Run the code above in your browser using DataLab