cross_validation(network, n.seeds, n.neigh, n.boot, kmax, proxyRep = 19,
proxyOrder = 30)
local.network.MR.new5
or
it can be imported.bootdeg
). Each matrix provides
the best seed-wave combinations (obtained via cross-validation) for
the respective estimation methodbootdeg
). Each matrix provides
the 95 using the best seed-wave combinations (see above).Thompson, M. E., Ramirez Ramirez, L. L., Lyubchich, V. and Gel, Y. R. (2015), Using the bootstrap for statistical inference on random graphs. Can J Statistics. doi: 10.1002/cjs.11271
net <- artificial_networks[[1]]
a <- cross_validation(network = net, n.seeds = c(10, 20, 30), n.neigh = c(1, 2),
n.boot = 200, kmax = 30)
Run the code above in your browser using DataLab