Enrichment
object
initFiles
and readEnrichment
has been run.
reSample
computes a statistic value and a p-value for each chromosomes and for the whole genome.
"reSample"(object, nSample = 100, empiricPvalue = TRUE, MAFpool = c(0.05, 0.10, 0.2, 0.3, 0.4, 0.5), mc.cores = 1, onlyGenome = TRUE)
"reSample"(object, nSample = 100, empiricPvalue = TRUE, sigThresh = 0.05, MAFpool = c(0.05, 0.10, 0.2, 0.3, 0.4, 0.5), mc.cores = 1)
readEnrichment
function.reSample
for p-values computation (minimum is 100).empiricPvalue=TRUE
(default) compute PValue based on the null distribution (resampling).
If empiricPvalue=TRUE
, the empirical p-values are computed instead.sigThresh = 0.05
for a given GWAS signal) used to compute an Enrichment Ratio.mc.cores=1
), i.e. at most how many child processes will be run simultaneously.
Must be at least one, and parallelization requires at least two cores.onlyGenome=TRUE
(default) compute resampling step for all chromosomes.snpEnrichment-package
Classes : Enrichment
, Chromosome
, EnrichSNP
Methods : plot
, reSample
, getEnrichSNP
, excludeSNP
, compareEnrichment
,
enrichment
, is.enrichment
, chromosome
, is.chromosome
Functions : initFiles
, writeLD
, readEnrichment
## Not run: data(toyEnrichment)
# reSample(object = toyEnrichment,
# nSample = 10,
# empiricPvalue = TRUE,
# MAFpool = c(0.05, 0.10, 0.2, 0.3, 0.4, 0.5),
# onlyGenome = TRUE)
# toyEnrichment## End(Not run)
Run the code above in your browser using DataLab