Learn R Programming

socialSim (version 0.1.8)

simulate_data: Simulate social interaction datasets

Description

This function generates datasets where individual phenotypes are influenced by both direct and indirect (social) effects, under a specified sampling design.

Usage

simulate_data(
  ind = 200,
  partners = 4,
  repeats = 1,
  iterations = 100,
  B_0 = 0,
  psi = NULL,
  Valpha,
  Vepsilon = NULL,
  Vpsi = 0,
  Vx = 1,
  Ve = 0.6,
  Vxe = 0,
  r_alpha_epsilon = 0,
  r_alpha_psi = 0,
  r_epsilon_psi = 0,
  r_alpha_x = 0,
  r_psi_x = 0,
  r_epsilon_x = 0,
  fix_total_var = TRUE
)

Value

A list with:

  • data: list of datasets

  • params: named list of effect sizes

  • design: sample design (n_ind, partners, repeats, iterations)

Arguments

ind

Number of individuals.

partners

Partners per individual.

repeats

Repeats per unique dyad.

iterations

Number of datasets to simulate.

B_0

Population intercept.

psi

Population-level responsiveness (social slope).

Valpha

Direct effect (focal variance).

Vepsilon

Indirect effect (partner variance).

Vpsi

Social responsiveness (among individual variance in slopes).

Vx

Partner trait variance.

Ve

Residual variance.

Vxe

Measurement error/within-individual variation in partner trait.

r_alpha_epsilon

Corr(alpha, epsilon).

r_alpha_psi

Corr(alpha, psi).

r_epsilon_psi

Corr(epsilon, psi).

r_alpha_x

Corr(alpha, x).

r_psi_x

Corr(psi, x).

r_epsilon_x

Corr(epsilon, x).

fix_total_var

Logical; if TRUE (default), residual variance is adjusted so total phenotypic variance is approx. 1.

Examples

Run this code
sim <- simulate_data(ind =50, partners = 4, iterations = 5,
                     B_0 = 1, Valpha=0.2, Vepsilon = 0.1)

Run the code above in your browser using DataLab