Learn R Programming

soilDB (version 2.5)

fetchRaCA: Fetch KSSL Data (EXPERIMENTAL)

Description

Get Rapid Carbon Assessment (RaCA) data via state, geographic bounding-box, RaCA site ID, or series query from the SoilWeb system.

Usage

fetchRaCA(series = NULL, bbox = NULL, state = NULL, rcasiteid = NULL, get.vnir = FALSE)

Arguments

series

a soil series name, case insensitive

bbox

a bounding box in WGS84 geographic coordinates e.g. c(-120, 37, -122, 38), constrained to a 5-degree block

state

a two-letter US state abbreviation, case insensitive

rcasiteid

an RaCA site id (e.g. 'C1609C01')

get.vnir

boolean, should associated VNIR spectra be downloaded? (see details)

Value

pedons:

a SoilProfileCollection object containing site/pedon/horizon data

trees:

a data.frame object containing tree DBH and height

veg:

a data.frame object containing plant species

stock:

a data.frame object containing carbon quantities (stocks) at standardized depths

sample:

a data.frame object containing sample-level bulk density and soil organic carbon values

spectra:

a numeric matrix containing VNIR reflectance spectra from 350--2500 nm

Details

The VNIR spectra associated with RaCA data are quite large [each gzip-compressed VNIR spectra record is about 6.6kb], so requests for these data are disabled by default. Note that VNIR spectra can only be queried by soil series or geographic BBOX.

References

http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054164 fetchRaCA() Tutorial

See Also

fetchOSD

Examples

Run this code
# NOT RUN {
if(requireNamespace("curl") &
    curl::has_internet()) {
    
    if(require(aqp)) {
    
        # search by series name
        s <- fetchRaCA(series='auburn')
        
        # search by bounding-box
        # s <- fetchRaCA(bbox=c(-120, 37, -122, 38))
        
        # check structure
        str(s, 1)
        
        # extract pedons
        p <- s$pedons
        
        # how many pedons
        length(p)
        
        # plot 
        par(mar=c(0,0,0,0))
        plot(p, name='hzn_desgn', max.depth=150)
}
}
# }

Run the code above in your browser using DataLab