# NOT RUN {
library("solitude")
library("tidyverse")
library("mlbench")
data(PimaIndiansDiabetes)
PimaIndiansDiabetes = as_tibble(PimaIndiansDiabetes)
PimaIndiansDiabetes
splitter   = PimaIndiansDiabetes %>%
  select(-diabetes) %>%
  rsample::initial_split(prop = 0.5)
pima_train = rsample::training(splitter)
pima_test  = rsample::testing(splitter)
iso = isolationForest$new()
iso$fit(pima_train)
scores_train = pima_train %>%
  iso$predict() %>%
  arrange(desc(anomaly_score))
scores_train
umap_train = pima_train %>%
  scale() %>%
  uwot::umap() %>%
  setNames(c("V1", "V2")) %>%
  as_tibble() %>%
  rowid_to_column() %>%
  left_join(scores_train, by = c("rowid" = "id"))
umap_train
umap_train %>%
  ggplot(aes(V1, V2)) +
  geom_point(aes(size = anomaly_score))
scores_test = pima_test %>%
  iso$predict() %>%
  arrange(desc(anomaly_score))
scores_test
# }
Run the code above in your browser using DataLab