mmer
when MORE than 1 variance component needs to be estimated through the use of the average information (AI3) algorithm.AI3(y, X=NULL, ZETA=NULL, R=NULL, draw=TRUE, REML=TRUE, silent=FALSE,
init=NULL, iters=50, forced=NULL, sherman=FALSE)
.
y = Xb + Zu + e
.
b ~ N[b.hat, 0] ............zero variance because is a fixed term
u ~ N[0, K*sigma(u)] .......where: K*sigma(u) = G
e ~ N[0, I*sigma(e)] .......where: I*sigma(e) = R
y ~ N[Xb, var(Zu+e)] ......where;
var(y) = var(Zu+e) = ZGZ+R = V which is the phenotypic variance
.
The function allows the user to specify the incidence matrices with their respective variance-covariance matrix in a 2 level list structure. For example imagine a mixed model with the following design:
.
fixed = only intercept.....................b ~ N[b.hat, 0]
random = GCA1 + GCA2 + SCA.................u ~ N[0, G]
.
where G is:
.
|K*sigma(gca1).....................0..........................0.........| |.............0.............S*sigma(gca2).....................0.........| = G
|.............0....................0......................W*sigma(sca)..|
.
The likelihood function optimized in this algorithm is:
.
logL = -0.5 * (log( | V | ) + log( | X'VX | ) + y'Py
.
where: | | refers to the derminant of a matrix
.
The algorithm can be summarized in the next steps:
.
1) provide initial values for the variance components
2) estimate the phenotypic variance matrix V = ZGZ + R
3) obtain Vinv by inverting V
4) obtain the projection matrix P = Vinv - [Vinv X (X'V-X)- X Vinv]
5) evaluate the logLikelihood as shown above
6) fill the average information matrix (AI3) with equation provided in Gilmour et al. (1995)
7) obtain AI3.inv by inverting AI3 (the average information matrix)
8) calculate scores by first derivatives refer as "B" in Gilmour et al. (1995)
9) update the values of variance components by : k(i+1) = k(i) + [ B(i) * AI3.inv ]
10) steps are repeated in a while loop until convergence is reached, the likelihood doesn't increase anymore.
Lee et al. 2015. MTG2: An efficient algorithm for multivariate linear mixed model analysis based on genomic information. Cold Spring Harbor. doi: http://dx.doi.org/10.1101/027201.