Last chance! 50% off unlimited learning
Sale ends in
adiag1(... , pad=as.integer(0), do.dimnames=TRUE)
TRUE
meaning to return
dimnames if possible. Set to FALSE
if performance is an
issuedim(a)+dim(b)
as described above.
If x=adiag1(a,b)
and dim(a)=c(a_1,...,a_d)
,
dim(b)=c(b_1,...,b_d)
; then all(dim(x)==dim(a)+dim(b))
and
x[1:a_1,...,1:a_d]=a
and
x[(a_1+1):(a_1+b_1),...,(a_d+1):(a_d+b_d)]=b
.
Dimnames are preserved, if both arrays have non-null dimnames, and
do.dimnames
is TRUE
.
Argument pad is usually a length-one vector, but any vector is
acceptable; standard recycling is used. Be aware that the output array
(of dimension dim(a)+dim(b)
) is filled with (copies of)
pad
before a
and b
are copied. This can be
confusing.
mmer
-- the core function of the package a <- array( 1,c(2,2))
b <- array(-1,c(2,2))
adiag1(a,b)
## dropped dimensions can count:
b2 <- b1 <- b
dim(a) <- c(2,1,2)
dim(b1) <- c(2,2,1)
dim(b2) <- c(1,2,2)
dim(adiag1(a,b1))
dim(adiag1(a,b2))
## dimnames are preserved if not null:
a <- matrix(1,2,2,dimnames=list(col=c("red","blue"),size=c("big","small")))
b <- 8
dim(b) <- c(1,1)
dimnames(b) <- list(col=c("green"),size=c("tiny"))
adiag1(a,b) #dimnames preserved
adiag1(a,8) #dimnames lost because second argument has none.
## non scalar values for pad can be confusing:
q <- matrix(0,3,3)
adiag1(q,q,pad=1:4)
## following example should make the pattern clear:
adiag1(q,q,pad=1:36)
# Now, a use for arrays with dimensions of zero extent:
z <- array(dim=c(0,3))
colnames(z) <- c("foo","bar","baz")
adiag1(a,z) # Observe how this has
# added no (ie zero) rows to "a" but
# three extra columns filled with the pad value
adiag1(a,t(z))
adiag1(z,t(z)) # just the pad value
Run the code above in your browser using DataLab