C++ implementation of the dominance matrix. Calculates the realized dominance relationship matrix. Can help to increase the prediction accuracy when 2 conditions are met; 1) The trait has intermediate to high heritability, 2) The population contains a big number of individuals that are half or full sibs (HS & FS).
D.mat(X,nishio=TRUE,min.MAF=0,return.imputed=FALSE)
If return.imputed = FALSE, the
If return.imputed = TRUE, the function returns a list containing
the D matrix
the imputed marker matrix
Matrix (
If TRUE Nishio ans Satoh. (2014), otherwise Su et al. (2012). See references.
Minimum minor allele frequency. The D matrix is not sensitive to rare alleles, so by default only monomorphic markers are removed.
When TRUE, the imputed marker matrix is returned.
The additive marker coefficients will be used to compute dominance coefficients as: Xd = 1-abs(X) for diploids.
For nishio method: the marker matrix is centered by subtracting column means
For su method: the marker matrix is normalized by subtracting row means
Covarrubias-Pazaran G (2016) Genome assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11(6): doi:10.1371/journal.pone.0156744
Nishio M and Satoh M. 2014. Including Dominance Effects in the Genomic BLUP Method for Genomic Evaluation. Plos One 9(1), doi:10.1371/journal.pone.0085792
Su G, Christensen OF, Ostersen T, Henryon M, Lund MS. 2012. Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers. PLoS ONE 7(9): e45293. doi:10.1371/journal.pone.0045293
The core functions of the package mmer
####=========================================####
#### EXAMPLE 1
####=========================================####
####random population of 200 lines with 1000 markers
X <- matrix(rep(0,200*1000),200,1000)
for (i in 1:200) {
X[i,] <- sample(c(-1,0,0,1), size=1000, replace=TRUE)
}
D <- D.mat(X)
Run the code above in your browser using DataLab