####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples
####=========================================####
####=========================================####
#### EXAMPLES
#### Different models with sommer
####=========================================####
data(DT_example, package="enhancer")
DT <- DT_example
head(DT)
####=========================================####
#### Univariate homogeneous variance models ####
####=========================================####
## Compound simmetry (CS) model
ans1 <- mmer(Yield~Env,
random= ~ Name + Env:Name,
rcov= ~ units,
data=DT)
summary(ans1)
####===========================================####
#### Univariate heterogeneous variance models ####
####===========================================####
## Compound simmetry (CS) + Diagonal (DIAG) model
ans2 <- mmer(Yield~Env,
random= ~Name + vsr(dsr(Env),Name),
rcov= ~ vsr(dsr(Env),units),
data=DT)
summary(ans2)
####===========================================####
#### Univariate unstructured variance models ####
####===========================================####
ans3 <- mmer(Yield~Env,
random=~ vsr(usr(Env),Name),
rcov=~vsr(dsr(Env),units),
data=DT)
summary(ans3)
# \donttest{
####==========================================####
#### Multivariate homogeneous variance models ####
####==========================================####
## Multivariate Compound simmetry (CS) model
DT$EnvName <- paste(DT$Env,DT$Name)
ans4 <- mmer(cbind(Yield, Weight) ~ Env,
random= ~ vsr(Name, Gtc = unsm(2)) + vsr(EnvName,Gtc = unsm(2)),
rcov= ~ vsr(units, Gtc = unsm(2)),
data=DT)
summary(ans4)
####=============================================####
#### Multivariate heterogeneous variance models ####
####=============================================####
## Multivariate Compound simmetry (CS) + Diagonal (DIAG) model
ans5 <- mmer(cbind(Yield, Weight) ~ Env,
random= ~ vsr(Name, Gtc = unsm(2)) + vsr(dsr(Env),Name, Gtc = unsm(2)),
rcov= ~ vsr(dsr(Env),units, Gtc = unsm(2)),
data=DT)
summary(ans5)
####===========================================####
#### Multivariate unstructured variance models ####
####===========================================####
ans6 <- mmer(cbind(Yield, Weight) ~ Env,
random= ~ vsr(usr(Env),Name, Gtc = unsm(2)),
rcov= ~ vsr(dsr(Env),units, Gtc = unsm(2)),
data=DT)
summary(ans6)
####=========================================####
####=========================================####
#### EXAMPLE SET 2
#### 2 variance components
#### one random effect with variance covariance structure
####=========================================####
####=========================================####
data("DT_cpdata", package="enhancer")
DT <- DT_cpdata
GT <- GT_cpdata
MP <- MP_cpdata
head(DT)
GT[1:4,1:4]
#### create the variance-covariance matrix
A <- A.mat(GT)
#### look at the data and fit the model
mix1 <- mmer(Yield~1,
random=~vsr(id, Gu=A) + Rowf,
rcov=~units,
data=DT)
summary(mix1)$varcomp
#### multi trait example
mix2 <- mmer(cbind(Yield,color)~1,
random = ~ vsr(id, Gu=A, Gtc = unsm(2)) + # unstructured at trait level
vsr(Rowf, Gtc=diag(2)) + # diagonal structure at trait level
vsr(Colf, Gtc=diag(2)), # diagonal structure at trait level
rcov = ~ vsr(units, Gtc = unsm(2)), # unstructured at trait level
data=DT)
summary(mix2)
# }
Run the code above in your browser using DataLab