require('MASS')
iris_x <- data.matrix(iris[, -5])
iris_y <- iris[, 5]
# Because the \\code{classify} function returns multiples objects in a list,
# we provide a wrapper function that returns only the class labels.
lda_wrapper <- function(object, newdata) { predict(object, newdata)$class }
set.seed(42)
errorest_boot(x = iris_x, y = iris_y, train = MASS:::lda, classify = lda_wrapper)
# Output: 0.0228
Run the code above in your browser using DataLab