Learn R Programming

sourceR (version 1.1.0)

Fits a Non-Parametric Bayesian Source Attribution Model

Description

Implements a non-parametric source attribution model to attribute cases of disease to sources in Bayesian framework with source and type effects. Type effects are clustered using a Dirichlet Process. Multiple times and locations are supported.

Copy Link

Version

Install

install.packages('sourceR')

Monthly Downloads

41

Version

1.1.0

License

GPL-3

Maintainer

Poppy Miller

Last Published

August 31st, 2020

Functions in sourceR (1.1.0)

DirichletNode

DirichletNode
DPModel_impl

Builds the source attribution model. Is not intended to be used by a regular user. Developers only here!
Alpha

Constructs alpha prior
Alpha_

Alpha prior hyperparameter class
DirichletProcessNode

DirichletProcessNode
FormulaNode

FormulaNode
AdaptiveMultiMRW

AdaptiveMultiMRW
AdaptiveDirMRW

AdaptiveDirMRW
DataNode

DataNode
Q

Constructs initial values for q
AdaptiveLogDirMRW

AdaptiveLogDirMRW
Y

Constructs disease count data
X

Constructs source data
PoissonNode

PoissonNode
Prev

Constructs prevalence data
sim_SA

Simulated data: Human cases of campylobacteriosis and numbers of source samples positive for Campylobacter.
campy

Human cases of campylobacteriosis and numbers of source samples positive for Campylobacter.
StochasticNode

StochasticNode
PoisGammaDPUpdate

PoisGammaDPUpdate
Node

Node
sourceR

sourceR: A package for fitting Bayesian non-parametric source attribution models.
sliceTensor

Slices a tensorA::tensor
GammaNode

GammaNode
HaldDP

Builds a HaldDP source attribution model